The fracture behaviour of dental enamel.

نویسندگان

  • Sabine Bechtle
  • Stefan Habelitz
  • Arndt Klocke
  • Theo Fett
  • Gerold A Schneider
چکیده

Enamel is the hardest tissue in the human body covering the crowns of teeth. Whereas the underlying dental material dentin is very well characterized in terms of mechanical and fracture properties, available data for enamel are quite limited and are apart from the most recent investigation mainly based on indentation studies. Within the current study, stable crack-growth experiments in bovine enamel have been performed, to measure fracture resistance curves for enamel. Single edge notched bending specimens (SENB) prepared out of bovine incisors were tested in 3-point bending and subsequently analysed using optical and environmental scanning electron microscopy. Cracks propagated primarily within the protein-rich rod sheaths and crack propagation occurred under an inclined angle to initial notch direction not only due to enamel rod and hydroxyapatite crystallite orientation but potentially also due to protein shearing. Determined mode I fracture resistance curves ranged from 0.8-1.5 MPa*m(1/2) at the beginning of crack propagation up to 4.4 MPa*m(1/2) at 500 microm crack extension; corresponding mode II values ranged from 0.3 to 1.5 MPa*m(1/2).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Evaluation of Fracture Strength of Cusp Coverage with Composite Versus Unsupported Enamel Reinforced with Composite in Posterior Dental Restorations

Background and aim: Efficient bonding techniques should be employed for strengthening tooth structure. Whether to preserve intact dental tissue or to sacrifice some undermined parts can still be challenging. We aimed to evaluate the fracture strength of cusp coverage with composite versus unsupported enamel reinforced with composite in posterior restorations. Materials and methods: In this in...

متن کامل

Influence of structural hierarchy on the fracture behaviour of tooth enamel.

Tooth enamel has the critical role of enabling the mastication of food and also of protecting the underlying vital dentin and pulp structure. Unlike most vital tissue, enamel has no ability to repair or remodel and as such has had to develop robust damage tolerance to withstand contact fatigue events throughout the lifetime of a species. To achieve such behaviour, enamel has evolved a complex h...

متن کامل

Research Paper:The Evaluation of The Etiology and Risk Factors Associated with Anterior Teeth Crown Fracture in North of Iran

 Abstract Introduction: Considering the importance of anterior teeth in chewing, speaking and esthetics, as well as the high prevalence of crown fracture among various traumatic injuries to the teeth, this study aimed to evaluate the etiology and risk factors associated with crown fractures of anterior teeth in 7-12 years old children. Materials and Methods:This descriptive cross-sectional ...

متن کامل

Sea otter dental enamel is highly resistant to chipping due to its microstructure.

Dental enamel is prone to damage by chipping with large hard objects at forces that depend on chip size and enamel toughness. Experiments on modern human teeth have suggested that some ante-mortem chips on fossil hominin enamel were produced by bite forces near physiological maxima. Here, we show that equivalent chips in sea otter enamel require even higher forces than human enamel. Increased f...

متن کامل

The Effect of Lithium Disilicate Ceramic Thickness and Translucency on Shear Bond Strength of Light-cured Resin Cement

Introduction: To achieve acceptable clinical performance, a ceramic veneer must be bonded to enamel by well-polymerized resin cement. Among different factors, thickness and translucency of the ceramic may affect the resin cement polymerization. Thus, the current study evaluated the effect of the thickness and translucency of lithium disilicate ceramic on light-cured resin cement bond strength t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2010